Analysis-by-synthesis: Pedestrian tracking with crowd simulation models in a multi-camera video network

نویسندگان

  • Zhixing Jin
  • Bir Bhanu
چکیده

For tracking systems consisting of multiple cameras with overlapping field-of-views, homography-based approaches are widely adopted to significantly reduce occlusions among pedestrians by sharing information among multiple views. However, in these approaches, the usage of information under real-world coordinates is only at a preliminary level. Therefore, in this paper, a multi-camera tracking system with integrated crowd simulation is proposed in order to explore the possibility to make homography information more helpful. Two crowd simulators with different simulation strategies are used to investigate the influence of the simulation strategy on the final tracking performance. The performance is evaluated by multiple object tracking precision and accuracy (MOTP and MOTA) metrics, for all the camera views and the results obtained under real-world coordinates. The experimental results demonstrate that crowd simulators boost the tracking performance significantly, especially for crowded scenes with higher density. In addition, a more realistic simulation strategy helps to further improve the overall tracking result. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pedestrians Tracking in a Camera Network

With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...

متن کامل

Pedestrians Tracking in a Camera Network

With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...

متن کامل

Real-time Crowd Tracking using Parameter Optimized Mixture of Motion Models

We present a novel, real-time algorithm to track the trajectory of each pedestrian in moderately dense crowded scenes. Our formulation is based on an adaptive particle-filtering scheme that uses a combination of various multi-agent heterogeneous pedestrian simulation models. We automatically compute the optimal parameters for each of these different models based on prior tracked data and use th...

متن کامل

Kinects and Human Kinetics: A New Approach for Studying Crowd Behavior

Modeling crowd behavior relies on accurate data of pedestrian movements at a high level of detail. Imaging sensors such as cameras provide a good basis for capturing such detailed pedestrian motion data. However, currently available computer vision technologies, when applied to conventional video footage, still cannot automatically unveil accurate motions of groups of people or crowds from the ...

متن کامل

Tracking Individual Targets in High Density Crowd Scenes Analysis of a Video Recording in Hajj 2009

In this paper we present a number of methods (manual, semi-automatic and automatic) for tracking individual targets in high density crowd scenes where thousands of people are gathered. The necessary data about the motion of individuals and a lot of other physical information can be extracted from consecutive image sequences in different ways, including optical flow and block motion estimation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2015